

EGYPTIAN EDUCATIONAL DEVELOPMENT PROJECTS EGYPTIAN AMERICAN INTERNATIONAL SCHOOL

Elementary Science Department SEMESTER 1 GRADE 3

Name:

Date:

Class:

Lab sheet 10.1

Machines and Forces

Inquiry Flipchart p. 47

Directed Inquiry

🕑 20-25 minutes

Objective

pairs

• Follow directions for an investigation to make a seesaw.

Inquiry Skills

- Predict
- Compare
- Identify and Control Variables
- Experiment

Materials

- ruler
- 1 hexagonal pencil (per pair)
- 2 stickers (per pair)

Observation	The ruler is balanced when we add the same number of coins on each end.
	As you apply force on one end (using coins), you can lift another load on the
	other side.

Conclusion	Simple machines have few moving parts that makes the job easier.
• 10 pennies (per pai	r)

Machines and Forces

You can build a simple machine to see how machines reduce the force needed to do work.

Materials

2 labels ruler 1 hexagonal pencil 10 pennies

Write the letter *L* for *load* on one label. Write the letter *F* for *force* on the other label.

- Place one label on each end of the ruler.
- Lay the pencil flat on your desk. Place the center of the ruler on the pencil. Balance the ruler.

Place pennies, one at a time, on the *F* sticker. How many are needed to lift the

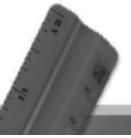
pennies on the L side?

Put 2 pennies on the L

sticker. What happens?

Experiment with different numbers of pennies as the load. Change the position of the pencil, too. Make a table to record your results.

Analyze Your Results


What simple machine did you use?

What purpose does the pencil serve?

How does the position of the pencil change the load that can be lifted?

